
R D-RI61 092 STABILITY ANALYSIS OF FINITE DIFFERENCE SCIENES FOR In
HYPERBOLIC SYSTEMS AN..(U) CALIFORNIA UNIV SANTA

I BRBARA ALGEBRA INST M MARCUS ET AL. 22 RUG B5
uNcLAssIFIEDFOSR-TR-B-93 AFOSR-3-B1SF/ 12 NL

1767mmhmhEl'. momol



- ~ - . - - - -..- --. - . -. . - .- ~

1~..

'C

F.

11111 I .c' IIIII~
L 132 11111-9-3

L _

1.1 ~
11111

IiIio

11111-

111111.25 flhII~~ _______

"'II
MIC,~OCOPy RESOLUTION TEST CHART

*~6~ ~Na 9AE~. 2~ S3~%T6R~S 963

f.

r

'a.

.- .. . .

. . . . . ....

.................................
. -

4% . . ,
***~.* . ~- .- ~...,.J.



-: -. AID-A 16 (azZ
REPORT DOCUMENTATION PAGE

Q EVR-;L- ,E VARKNC-

a Si.UR:' CLASSIFICATION AUTHORITY 3 DISTRBUTION'AJWAILA3?LITY OF REPOQ'

.. ~i.) A~.C O~4DO~RDNG ~ . . *dforpubli

.2 ~A~VNG ~GN.AON~L'O i3S;s5 MOTRiNC J;(GA'41ATION REPORT N,.1zER(

____ ___P____ 0__ _9 R 7'! TR- 8 5
dAME OF PERPORMING ORGANIZATION 60 OFFICE SYMBOL 7a NAME OP MONirOR-NG ORGANIZATION

IN. ['ri '-.r of: Ca! ifornia f (if applicable)

4:-.i r:oar 1 ,

0 -1P-,S Cry, State. anid ZIP Code) 7b ADDRESS Cry. State, and ZIP Code)
Sa- a Y-i-roira . CA 931 06 2 .. .. ..

___ ; C tND!NG,.SPCOf*S0R.%G I8D O ;ICE SYIMBO_ 9 PROCjREME1g ;NSTRd'ENT (DENT;iCArION %LMBER
ORCA% ZA-ON (if applicable)

< . -I I .1 7,AFOSR-83-0150
A3DES(City State. and ZIP Code) 10 SO~jRCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNiT
ELEMENT NO NO NO ACCESSION NO

TITLE (include Security Classification)610F-)4

STABILITY ANALYSIS OF FINITE DIFFERENCE SCHEMES FOR HYPERBOLIC SYSTEMS, AND PROBLEMS IN
APPT TFL A'ZT) ('OMfPFTATTQZA;. T.INFAR ALCEBRA

Q2 PERSONAL AUTHOR(S)

13a TYPE OF REPORT 13bt TIME COVERED (14. DATE OF REPORT (Ya, Month, Day) 55 PAGE COUNT
FROM ln 1g4TO _43l3_5 11985, AUGUST, 22 I 27

COSATI CODES 18. SuBJECT TERMS (Continue on reverse if necessary and identify by biock number)

F!EL) GROUP SUB-GROUP

1 9 ABSTRACT (Continuie on reverse if necessary and identify by block number)

..)e Air Force' supported research of M. Goldberg durinz the period May 1. 1984+ April 30,
i c its t, 'k -nain -ichitevements: (a) New stahi) it. criteria for finite

*. oipir.:a n t,) in it ial-boundarv value problems ass(oo)iated with the

3,.t,\3J-:ti' x-+ Fiu:x.t) + f(X,t), X 2 0, t > 0.

- .... - 1!11 Li ic it ivi t% -.)ontrt los or a rbit ra-irv 7-itrix norms,* andl a
* , . ~ > -. 2~rt r~ *r t2 'O~-fJ.~' ~ :0-'atrict.~

D0 )5R BuT ON AvAILABIL!TY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UJ %CASS1FPED/Ui~NL1MITED 0 SAME AS RPT 0 D',C USE QS - -

N A.'t 3; RiEl.'NSiBLE ND'V.DAL 22D . 01'N (include Area Coae) ZUt' OFF-CE SYMBOL
David W. Fox -r, - 7,7- 5026 i P11

DO FORM 1473,.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF TH'S PACE
All other edit-on& are 00so'ele

* DhIC FILE O Y.,~:.
*~~~~~~ ..... 

. . . . . . . .



SECUMTY CLASSIICATION OF TNS PAGE

19.
The research of M. Marcus falls in the following categories:
(1) The relationship between the algebraic properties of a finite complex matrix and the
geometric properties of its numerical range; (2) the eigenvalue containment properties
of the numerical range and their use to obtain computationally significant estimates
of such associated numbers as the condition number, the parameters in Tchebychev
iteration for an n-square real linear system and initial estimates in various iterative
eigenvalue determination procedures; (3) the foundations of a theory for the numerical
range of certain operators on various symmetry classes of tensors, e.g., the Grassmann
and completely svmmetric spaces. A typical instance of such results are the classical
inequalities of H. Weyl relating eigenvalues and singular values.

UriC' ASSr ED
SECURITY CLASSIFtCATION OP TMIS PAGE

. . . . . . . . . . .



MFOSR -TR.

INTERIM SCIENTIFIC REPORT

Stability Analysis of Finite Difference Schemes for
Hyperbolic Systems, and Problems in Applied and

Computational Linear Algebra

Grant AFOSR-83-0150

Period: 1 May 1984 - 30 April 1985

Principal Investigators: Marvin Marcus
Moshe Goldberg

Algebra Institute
University of California A
Santa Barbara, CA 93106

Q UALITY
.NSPECTEO 1

S-.+. " r'5''~t

o Z UnlI tc C

_-,..'- :~~~~~1 .1_3 z z 6-._+ j :.:,.. ,. .::.. . { - , ..- , - _." ." ," : - " " " ':



TABLE OF CONTENTS

Page

SUMMARY 3

REPORTS

I. M. GOLDBERG:
Stability Criteria for Difference
Approximations to Hyperbolic Systems
and Multiplicativity of Matrix Norms.

Abstract 4
Research Report 5
Publications 17
Interactions 18

II. M. MARCUS:
Problems in Applied and
Computational Linear Algebra

Abstract 19
Research Report 20
Publications 24
Interactions 25

PROFESSIONAL PERSONNEL 27

' 0° a t 104 04t l. o

2

............i k .ii ............................................ ....... I



STABILITY ANALYSIS OF FINITE DIFFERENCE SCHEMES FOR
HYPERBOLIC SYSTEMS, AND PROBLEMS IN APPLIED AND

COMPUTATIONAL LINEAR ALGEBRA

SUMMARY

This interim report describes the following two

projects carried out undertAir Force grant'

AFOSR-83-0150,'during the period May 1, 1984 -

April 30, 1985: (a) Stability criteria for

difference approximations to hyperbolic systems,

and multiplicativity of matrix norms, by

M. Goldberg' (b) Problems in applied and

computational linear algebra, by M. Marcus.

The aim of these projects was to achieve better

understanding of useful computational techniques

for hyperbolic initial-boundary value problems,

and to improve basic mathematical tools often

used in numerical analysis and applied mathematics.
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STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS TO

HYPERBOLIC SYSTEMS, AND MULTIPLICATIVITY OF MATRIX NORMS

Moshe Goldberg

ABSTRACT

The Air Force supported research of M. Goldberg during

the period May 1, 1984 - April 30, 1985, consists of

two main achievements: (a) New stability criteria for

finite difference approximations to initial-boundary

value problems associated with the hyperbolic system

3u(x,t)/at = A~u(x,t)/Bx + Bu(x,t) + f(x,t), x _ 0, t k- 0.

(b) A study of submultiplicativity properties for

arbitrary matrix norms, and a complete description of

those properties for the well-known f norms onp

matrices.
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STABILITY CRITERIA FOR DIFFERENCE APPROXIMATIONS

TO HYPERBOLIC SYSTEMS, MULTIPLICATIVITY OF MATRIX NORMS

Moshe Goldberg

1. Convenient Stability Criteria for Difference Approximations

to Hyperbolic Initial-Boundary Value Problems.

Consider the first order system of hyperbolic partial

differential equations

c)u(x,t)/3t = Aau(x,t)/ax + Bu(x,t) + f(x,t), x > 0, t > 0,

where u(x,t) is the unknown vector; A a Hermitian matrix

of the form A = A1 t A2, where A is negative definite and

A2 is positive definite; and f(x,t) is a given vector. The

problem is well posed in L2 (0,-) if initial values

u(x,t) = u 0(x) , 20,M), x > 0,

and boundary conditions

uI(0,t) = Su2 (0,t) + g(t), t > 0,

are prescribed. Here u1  and u2 are the inflow and out-

flow parts of u corresponding to the partition of A, and

S is a coupling matrix.
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In the past summer, E. Tadmor and I [19] have revised

and extended our previous paper [18] in which we obtained new,

easily checkable stability criteria for a wide class of finite

difference approximations for the above initial-boundary value

problem. Our difference approximations consist of a general

difference scheme -- explicit or implicit, dissipative or not,

two-level or multi-level -- and boundary conditions of a rather

general type.

In our work we restricted attention to the case where the

outflow boundary conditions are translatory, i.e., determined

at all boundary points by the same coefficients. This, however,

is not a severe limitation since such boundary conditions are

commonly used in practice. In particular, when the numerical

boundary consists of a single point, the boundary conditions

are translatory by definition.

Throughout our papers [18, 19] we assumed that the basic

scheme is stable for the pure Cauchy problem, and that the

assumptions which guarantee the validity of the stability

theory of Gustafsson, Kreiss and Sundstrom [20] hold. With

this in mind we raised the question of stability for the en-

tire difference approximation.

The first step in our stability analysis was to prove

that the approximation is stable if and only if the scalar

outflow components of its principal parts are stable. This

reduces our global stability question to that of a scalar

homogeneous outflow problem of the form

6
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a u/3t= a3u/3x, a = constant > 0, x > 0, t > 0

u(x,0) = u0(x), x > 0; u(0,t) = 0, t > 0.

The stability criteria obtained in [18, 19] for the

reduced problem depend both on the basic difference scheme

and on the boundary conditions, but very little on the inter-

action between the two. Such criteria eliminate the need to

analyze the intricate and often complicated interaction between

the basic scheme and the boundary conditions; hence providing

in many cases a convenient alternative to the well known

stability criteria of Kreiss [24] and of Gustafsson, Kreiss

and Sundstrom [20]. It should be pointed out that our old

scheme-independent stability criteria in [15, 16] easily

follow from the present criteria in [18, 19].

Having the new criteria in [18, 191, we reestablished

all the examples in our previous papers [15, 16). We showed,

for instance, that if the basic scheme is arbitrary (dis-

sipative or not) and the boundary conditions are generated by

either the explicit or implicit right-sided Euler schemes,

then overall stability is assured. For a dissipative basic

scheme we proved stability if the boundary conditions are de-

termined by either oblique extrapolation, the Box-scheme,

or the right-sided weighted Euler scheme. These and other

examples incorporate most of the cases discussed in recent

literature [3, 4, 15, 16, 20, 21, 23, 25, 30, 33, 34, 36].

7



We treated in [18, 19] some new examples as well. Among

these we found that if the basic scheme is arbitrary and two-

level, then horizontal extrapolation at the boundary maintains

overall stability. Other stable cases occur when the basic

scheme is given by either the backward (implicit) Euler scheme

or by the Crank-Nicholson scheme, and the boundary conditions

are determined by oblique extrapolation. Such examples, where

neither the basic scheme nor the boundary conditions are

necessarily dissipative, could not have been handled by our

p:evious results in [15, 16].

We drew great satisfaction from the fact that our theory

and examples in [18, 19] were used already by a number of

authors, including Berger [2], LeVeque [27], South and Hafez

,35], Thun6 [37], Trefethen [38, 39], and Yee [41]. Thun6

j37], in his effort to provide a software package for stability

analysis of finite difference approximations to hyperbolic

initial-boundary value problems, says for example: "...Another

approach has been to derive new criteria, based on the

Gustafsson-Kreiss-Sundstrom theory but more convenient for

practical use... The most far-reaching work along these lines

has been made by Goldberg and Tadmor [15, 16, 18]..."

2. Submultiplicativity and Mixed Submultiplicativity of

Matrix Norms.

During 1980-1982, E.G. Straus (now deceased) and I [11,

12] investigated submultiplicativity properties of norms and

8



seminorms on operator algebras -- an important subject in many

fields of numerical analysis and applied mathematics. in our

work we study an arbitrary normed vector space V over the

complex field C, with an algebra L(V) of linear bounded

operators on V, and a seminorm N on L(V). If N is

positive definite, i.e., N(A) > 0 for all A # 0, then we

call N an operator norm. If in addition, N is sub-

mul.A1:cative, namely N(AB) < N(A)N(B) for all A, B E L(V),

then N is called an operator norm on L(V).

G1ven a seminorm N on L(V) and a fixed constant

p > 0, then obviously N = ON is a seminorm too. Similarly,

N is a norm if and only if N is. In both cases, N mayui p

or may not be submultiplicative. If it is, we say that p is

a multiplicativity factor for N.

Having these definitions we proved the following in Ill]:

() if N is a norm or a nontrivial seminorm on L(V), then

N has multiplicativity factors if and only if

P sup{N(AB) : N(A) = N(B) = 1} < .

(ii) If p N <  ' then p is a multiplicativity factor for

N if and only if 0 > N

Special attention was given by us to the finite dimen-

sional case where it suffices, of course, to consider Cnxn ,

the algebra of n x n complex matrices. We proved in this

case that while all norms on Cn n do have multiplicativity

9



factors, indefinite seminorms on Cnxn never have such factors.

in the infinite dimensional case, however, the situation is

less decisive, i.e., there exist norms and nontrivial semi-

norms on L(V) which may or may not have multiplicativity

factors.

In both the finite and infinite-dimensional cases we

proved that if M and N are seminorms on L(V) such that

M is multiplicative, and if q > t > 0 are constants satisfy-

ing

tM(A) < N(A) < nM(A) for all A E L(V),

then any p with p > n/t2 is a multiplicativity factor for N.

Using this result we showed, for example, that if V is

an arbitrary Hilbert space and

r(A) = supj (Ax,x) : x E V, jxl = 11, A E L(V),

is the classical numerical radius, then pr is an operator

norm if and only if p > 4; thus, in particular finding that

4r is an operator norm. This assertion is of interest since

the numerical radius r is one of the best known non-

multiplicative norms [1, 5, 17, 22, 32], and it plays an

important role in stability analysis of finite difference

schemes for multi-space-dimensional hyperbolic initial-value

problems [17, 26, 28, 40]. Similar results for generalized

numerical radii are given in [9-12, 14].

10



In our last joint effort, Straus and I [13] obtained

multiplicativity factors for the well known £ norms
p

(1 ( P < on):

(= jaij1 p I  A = (a.) E C
iA;p 1)1 ) nxn*

It was shown by Ostrowski [31] that these norms are multi-

plicative 1if and only if 1 < p S 2. For p _ 2 we have shown

in [13] that V is a multiplicativity factor for I Ap if

and only if >_ nl -2/p; hence, obtaining the useful result
that n1-2/P1 AIp is a submultiplicative norm on C

One of my objectives in 1984 was to extend the above

ideas to mixed submultiplicativity. More precisely, let

N1 : Cmxn R, N2 : Cmx k ' R, N3 :Ckxn + R

be given norms on the class of m x n, m x k, and k x n

complex matrices, respectively. Unless m = n, Cmxn  is not

an algebra; so the question whether N1 is submultiplicative

is irrelevant. Instead, it seems natural to ask whether there

exist constants p > 0 for which

N1 (AB) < V N2 (A)N3 (B) for all A E Cmxk, B E Ckxn. (1)

We call a constant j > 0 which satisfies (1), a multiplica-

tivity factor for N with respect to N2 and N3. In

ii



particular, if (1) holds with p = 1, we say that N1 is

submultiplicative with respect to N2 and N3.

With these definitions, we can prove [8]:

(i) N1 has multiplicativity f,--tors with respect to N2

and N3.

(ii) p > 0 is a multiplicativity factor for N1 with

respect to N2 and N3  if and only if

> Pmin = max{N 1 (AB):A E Cmxk , B E Ckxn, N 2(A) = N3 (B) = 1).

In view of this theorem, I revisited the above mentioned 2
p

norms for matrices, and determined explicitly, for arbitrary

p, q, r such that 1 < p,q,r < , the best (least) constant

Pmin for which

lAB-p < IAJqiBr for all A E CkBE C

p' min q r rxk' kxn*

The desired constant, [8], is

pmin = pq(m)A pr(n)X q' (k),

where 1/r + 1/r' = 1, and

1, p q

A pq(m)

m q p.

This extends some partial results in [6, 7].

12
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PROBLEMS IN APPLIED AND COMPUTATIONAL LINEAR ALGEBRA

Marvin Marcus

ABSTRACT

The research of M. Marcus falls in the following categories:

(1) The relationship between the algebraic properties of a

finite complex matrix and the geometric properties of its

numerical range; (2) the eigenvalue containment properties

of the numerical range and their use to obtain computa-

tionally significant estimates of such associated numbers

as the condition number, the parameters in Tchebychev

iteration for an n-square real linear system and initial

estimates in various iterative eigenvalue determination

procedures; (3) the foundations of a theory for the

numerical range of certain operators on various symmetry

classes of tensors, e.g., the Grassmann and completely

symmetric spaces. A typical instance of such results are

the classical inequalities of H. Weyl relating eigenvalues

and singular values.
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PROBLEMS IN APPLIED AND COMPUTATIONAL LINEAR ALGEBRA

Marvin Marcus

My Air Force supported research during the period

May 1, 1984 - April 30, 1985, consists of the following

papers:

I. Singular Values and Numerical Radii (to appear in

Linear and Multilinear Algebra)

This paper proves the following result relating singular

values and the numerical radius of an n-square complex matrix

A. Let U 2 
=> " a n be the singular values of A and

let r(A) denote the numerical radius of A. Then

(a + a 2 + .. + n )/n 5 r(A). (1)

Moreover, equality holds in (1) if and only if A/r(A) is

unitarily similar to the direct sum of a diagonal unitary matrix

and unit multipliers of 2 x 2 matrices of the form

[2 ]
where 0 < d 1.
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We intend to generalize (1) to

k In k kEk~al,...an)/(k) rd(A) (2)

where rd is the kth decomposable numerical radius of A:

dk

rd(A) = maxldet[(Axi,x.K]I

where the vectors xI .... Xk vary over all sets of k

orthonormal vectors. (See M. Marcus and P. Andresen, Linear

Algebra Appl. 16 (1977), pp. 131-151.) Determining the case

of equality in (2) appears to be difficult.

2. Conditions for Generalized Numerical Range to be Real

(to appear in Linear Algebra and Its Applications)

Let C and A be n-square complex matrices. The C

numerical rage of A is the set of numbers

W(C,A) = {tr(CU*AU),U unitary}.

We prove in this paper that if W(C,A) is contained in a fixed

line parallel to the real axis then at least one of C and A

must be normal. We also characterize the A and C for which

W(C,A) is a subset of the real line. We show that for the

classical numerical range, W(CU*AU) is a subset of the real

line for all unitary U if and only if at least one of C

and A is scalar and their product is hermitian. We are
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interested in extending this type of result to functions of

CU*AU other than the trace. Moreover, based on earlier work

(Marcus and Filippenko), if W(CU*AU) is a subset of the unit

disk, then suitable conditions on the eigenvalues of C or A

(or both) will undoubtedly imply that C or A (or both) are

closely related to unitary matrices.

3. Ryser's Permanent Identity in the Symmetric Algebra

(to appear in Linear and Multilinear Algebra)

The polynomial algebra over a field is isomorphic to the

symmetric algebra over a vector space. Using this isomorphism,

several identities for the permanent function are derived; one

of which is Ryser's expansion theorem. Nijenhuis and Wilf have

published an efficient FORTRAN code for implementing the

identity.

4. Construction of Orthonormal Bases in Higher Symmetry

Classes of Tensors (to appear in Linear and Multilinear

Algebra)

This paper presents a method for constructing an ortho-

normal basis for a symmetry class of tensors from an ortho-

normal basis of the underlying vector space. The basis so

obtained is not composed of decomposable symmetrized tensors.
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In fact, it is shown that for symmetry classes of tensors

whose associated character has degree higher than one, it is

impossible to construct an orthogonal basis of decomposable

symmetrized tensors from any basis of the underlying vector

space. The paper ends with an open question on the possibility

of a symmetry class having an orthonormal basis of decomposable

symmetrized tensors.

5. An Exponential Group (Linear and Multilinear Algebra 16

(1984), pp. 97-99)

This short note shows how certain binomial identities can

be derived by using the exponential of a matrix.
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PUBLICATIONS

Marvin Marcus

May 1, 1984 - April 30, 1985

1. Discrete Mathematics: A Computational Approach, Computer
Science Press Inc., Rockville, Maryland, pp. 1-329.

2. Bilinear ranges, convexity and elementary doubly stochastic
matrices (with M. Sandy and K. Kidman), Linear and Multi-
linear Algebra, in press.

3. Products of doubly stochastic matrices (with K. Kidman
and M. Sandy), Linear and Multilinear Algebra, Vol. 15 (1984),
pp. 331-340.

4. Unitarily invariant generalized matrix norms and Hadamard
products (with K. Kidman and M. Sandy), Linear and Multi-
linear Algebra, Vol. 16 (1984), pp. 197-213.

5. An exponential group, Linear and Multilinear Algebra,
Vol. 16 (1984), pp. 97-99.

6. Conditions for the generalized numerical range to be
real (with M. Sandy), Linear Algebra and Its Applications,
to appear in August 1985.

7. Ryser's permanent identity in the symmetric algebra (with
M. Sandy) to appear in Linear and Multilinear Algebra.
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INTERACTIONS

Marvin Marcus

May 1, 1984 - April 30, 1985

Extensive correspondence with researchers in linear algebra,

matrix theory, convexity theory, and numerical algebra in

various editorial and reviewing capacities:

1. Mathematics Editor, Computer Science Press

2. Editor, Linear and Multilinar Algebra, published by
Gordon and Breach, Science Publishers, Inc.

3. Associate Editor, Linear Algebra and Its Applications,
Elsevier Science Publishing Co., Inc.

4. Member of the Editorial Board, Pure and Applied Mathematics
Series, Marcel Dekker, Inc.

5. Editor, Linear Algebra Volumes of Encyclopedia of Applica-
ble Mathematics, Addison-Wesley Publishing Co.

6. Associate Editor, Advanced Problem Section, American
Mathematical Monthly.

7. Referee and Reviewer for the following journals:

Linear and Multilinear Algebra

Linear Algebra and Its Applications

Duke Journal

Proceedings of the AMS

Transactions of the AMS

Bulletin of the AMS

Mathematical Reviews

Memoirs of the MAA
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American Mathematical Monthly

Canadian Journal of Mathematics

Pacific Journal of Mathematics

Proceedings of the Cambridge Philosophical Society

Zentralbl at
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